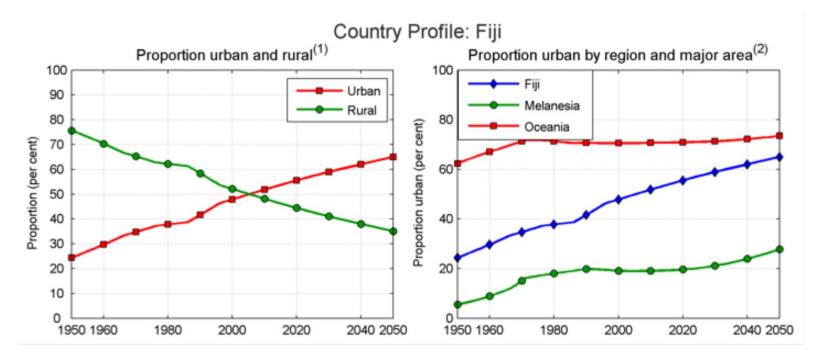


Some recent (global) forest trends

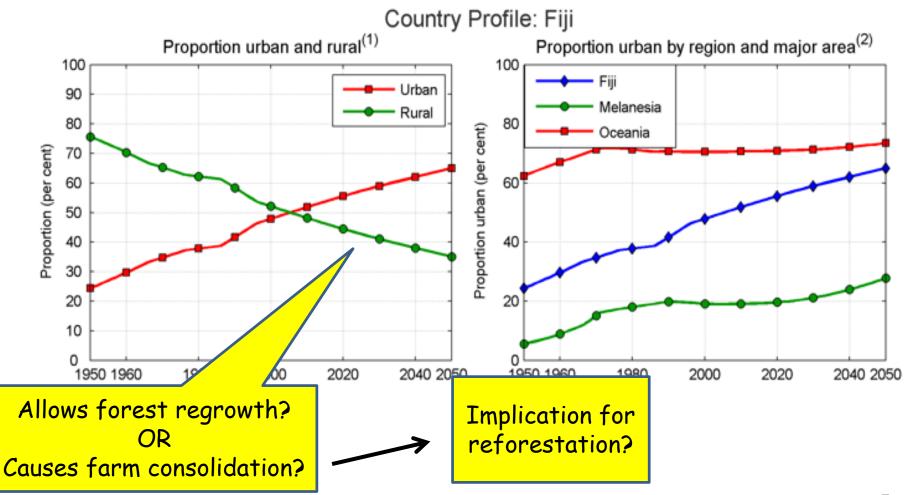
 Continued loss of natural forests and a rising increase in area of 'degraded' land

• But more national <u>reforestation targets</u>

- Also increased global interest in forest restoration for <u>ecosystem services</u>
 - E.g. Bonn Challenge of 350 mill ha by 2030


Recent trends More reforestation as income rises?

GDP per person and change in forest area*


Meanwhile, in Oceania

- 1. Patterns of land tenure
 - Difficult for large scale reforestation??
- 2. Urbanisation (in larger islands)

Patterns of urbanisation

Increasing in Melanesia but more stable in Oceania

Meanwhile, in Oceania

- 1. Patterns of land tenure
- 2. Urbanisation (in larger islands)
- 3. Growing concerns about impacts of climate change
 - More variable rainfall (Power et al 2017. Nature Comm.)
 - More severe cyclones (Sugi et al. 2016. Climate Dynamics)
 - Implications for food security?
- 4. Extensive and poorly managed logging of natural forests loss of future income and ecosystem services?

Why undertake reforestation in Oceania*?

- Traditional reason: To supply timber markets
 - But limited local timber market (?)
 - Export market requires high value species
 - Also need large areas to have regular (i.e. not episodic) supply
- New Reason: To supply ecosystem services
 - But ES market(s) poorly developed?
- New Reason: To enhance ecological resilience
 - But resilience to storms? Or fires? Or droughts? Or pests? Or ?
- New Reason: To enhance economic resilience
 - Diversity of goods for a variety of markets?

But some issues

- Reforestation but on whose land?
- Relationship with agriculture? Who decides?
- Reforestation for what purpose?
 - Private benefit?
 - Public benefit?
- Reforestation but who pays?
- Reforestation but what kind?
 - Timber?
 - Ecosystem services?
 - Resilience?

Option 1 - Natural regrowth

1. Advantages

- Cheap
- Source of NTFPs
- Generates many ecosystem services
- Resilience high?

2. Disadvantages

- Who owns or manages it (perhaps across several land owners or households)?
- Might not always develop (or is patchy)
- Dominated by only a few species?
- Not always valued by community? (little immediate benefit to landowners seem as 'wasteland'?)

Option 2 - Simple plantations

Species		
Pinus (Fiji)	Economic: Low value; Best (only?) if grown by industrial growers Resilience: Sensitive to pest, fires and storms	
Whitewood (<i>Endospermum</i>) (Vanuatu)	Economic: Good market Potential for smallholders (but need minimum number?) Resilience: Tolerant of high winds	
Mahogany (Swietenia) (Fiji)	Economic: High value Resilience: Borers? Sensitive to fires and storms?	
Teak	Economic: High value Resilience: Sensitive to fires and storms?	

Option 3 - multi-species plantings

- Sandal wood (needs host plant) some advantages
 - Very high value product
 - Extensively researched
 - Good for smallholders
- Other mixed-species plantations some advantages
 - Ecological resilience
 - Economic resilience

Example of a multi-species farm forestry plantation used in Philippines

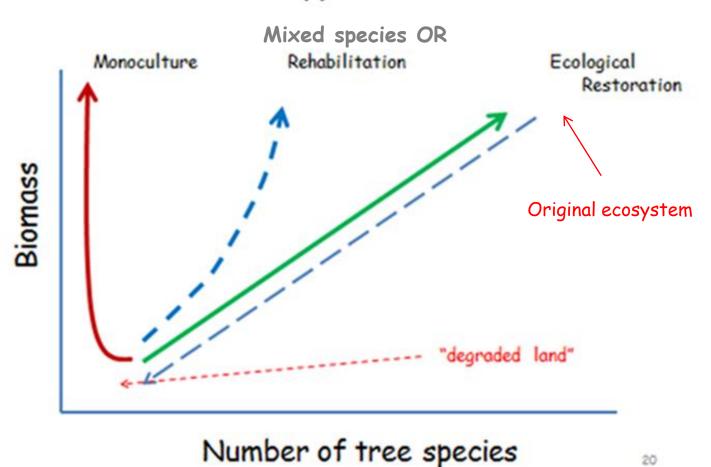
Product	Time (y)	Number of species	Tree density
Firewood	6 - 10	3 - 5	450
Poles	8 - 12	2 -3	200
Fast growing timber	14 - 18	3 - 5	250
Slow growing timber	20+	3 -10	200
TOTAL		11 - 23	1100

Example of a multi-species farm forestry plantation used in Philippines

Product	Time (y)	Number of species	Tree density	
Firewood	6 - 10	RESILIENT because Diversity of species		
Poles	8 - 12	 Variety of goods 		
Fast growing timber	14 - 18	 Several markets Cash-flow timing varies 		
Slow growing timber	20+	3 -10	200	
TOTAL		11 - 23	1100	

Community resilience

- Depends on reforestation generating a variety of economic goods and services
- Institutional arrangements to promote different forms of reforestation
- Institutional capacity to monitor and learn from experiences
- Institutional rules to share costs and benefits of reforestation between households and community


But some questions

- 1. How to make any kind of reforestation attractive to landholders?
 - Convince farmers it can be profitable
 - Overcome perception that opportunity costs are too high
 - Build capacity for them to become involved
 - Ensure it complements and does not compete with food production
- 2. How to design new <u>forests</u> and <u>landscape mosaics</u> to build resilience and ensure both landholders and wider community benefit from reforestation?
 - Ad hoc decision making unsuitable
 - Some kind of coordinated land use planning needed to generate improved resilience?
 - Need to exceed a threshold area?
- 3. How to judge and measure success of any new reforestation methods?
 - What tools to use? What metrics?
 - Who judges?
 - When?

Conclusions

- <u>Large scale</u> reforestation will be difficult (agroforestry easier?)
- Extent of ecological resilience generated will depend on type of reforestation
- Extent to which forms of resilience that benefit the community will also depend on
 - How much reforested
 - Its location

Three different types of reforestation

